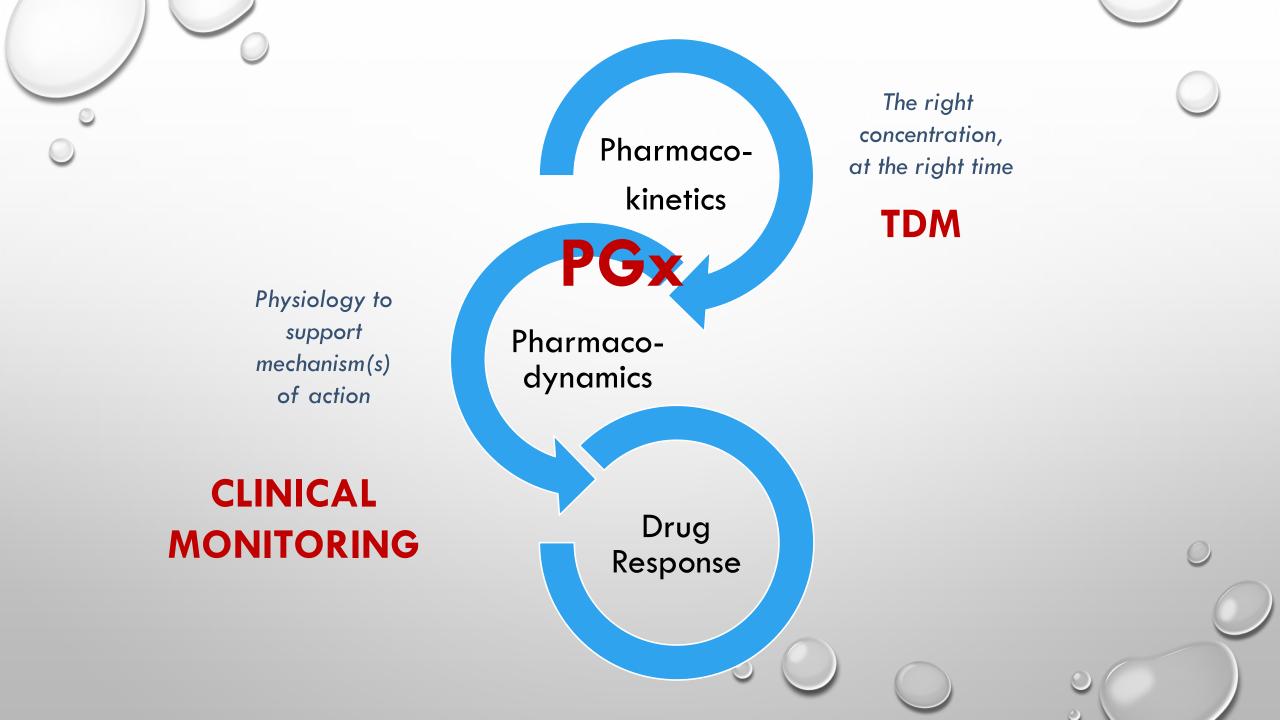


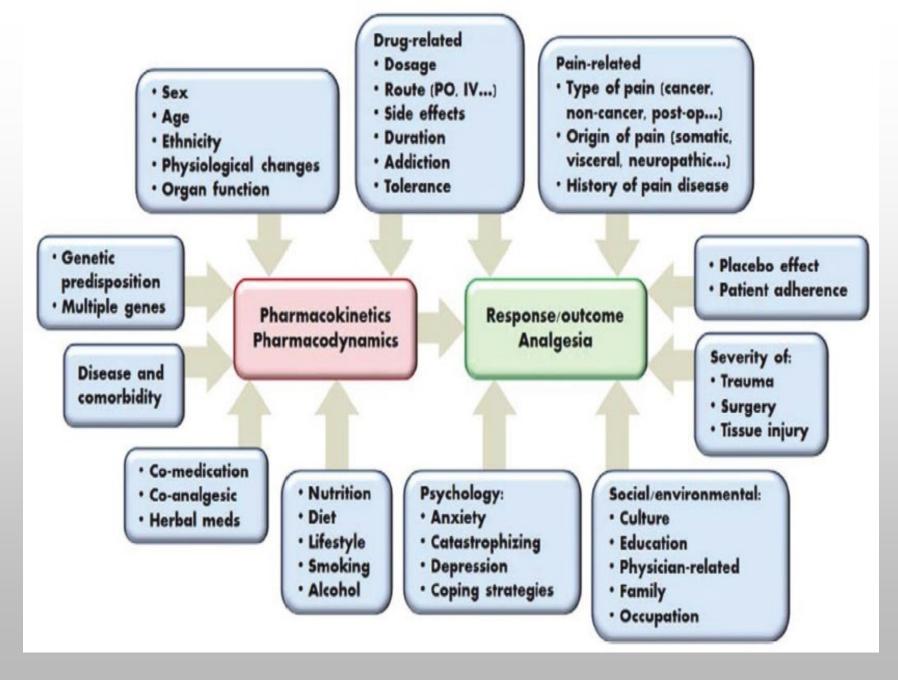
PGX AND TDM IN PSYCHOPHARMACOLOGY

GWEN MCMILLIN, PHD, DABCC(CC,TC)

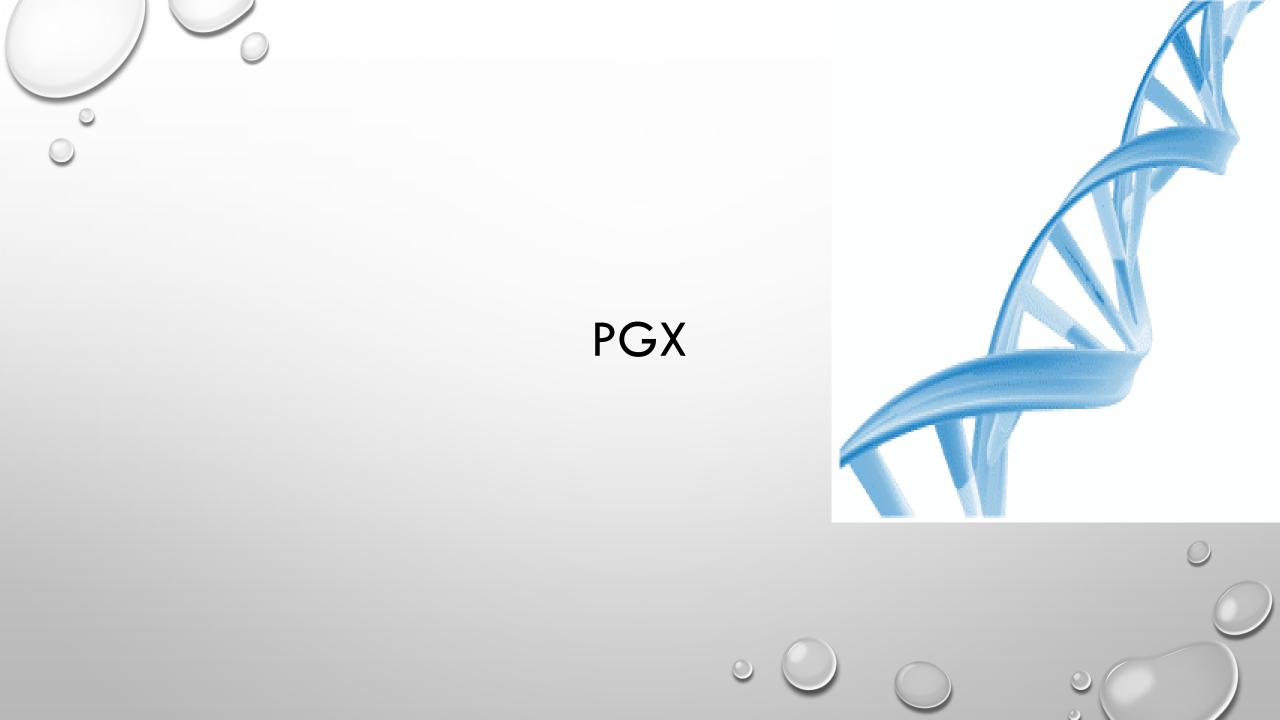
UNIVERSITY OF UTAH, DEPT OF PATHOLOGY

ARUP LABORATORIES

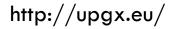

OUTLINE



NUTS AND BOLTS OF PHARMACOGENOMICS (PGX) TESTING


- EXAMPLES RELEVANT TO BEHAVIORAL HEALTH CARE
 - SINGLE GENE-DRUG ASSOCIATIONS
 - MULTIPLE GENE-DRUG ASSOCIATIONS
 - TDM

- IMPLEMENTATION
 - VARIABLES TO CONSIDER WHEN SELECTING A TEST
 - FACTORS FOR SUCCESS


Clarke NJ, Clin Chem 62:70-6, 2016

POSSIBLE INDICATIONS FOR PGX

- MANDATED FOR SAFETY (E.G. ABACAVIR AND *HLA-B**57:01)
- CLINICALLY ACTIONABLE PGX ASSOCIATIONS FOR MEDICATIONS UNDER CONSIDERATION
- PATIENT HAS FAILED MULTIPLE MEDICATIONS
- PATIENT HAS EXPERIENCED AT LEAST ONE SERIOUS ADVERSE DRUG REACTION
- PERSONAL OR FAMILY HISTORY OF ADVERSE DRUG REACTIONS
- RELEVANT TESTING IS AVAILABLE WITH REASONABLE LOGISTICS

Home U-PGx PREPARE Education News Login Members Contact

WE WANT TO MAKE EFFECTIVE TREATMENT OPTIMIZATION ACCESSIBLE TO EVERY EUROPEAN CITIZEN

TELL ME MORE

EXAMPLES OF US FACILITIES THAT ARE EARLY ADOPTERS

https://www.pharmgkb.org/page/pgxImplementationResources

FDA DRUG LABELS THAT CONTAIN PGX (N=404 ENTRIES AS OF

APRIL, 2020)

18 therapeutic areas, of which top 10 are :

- Oncology (n=164)
- Psychiatry (n=37)
- Infectious Disease (n=35)
- Neurology (n=28)
- Hematology (n=26)
- Anesthesiology (n=24)
- Cardiology (n=18)
- Gastroenterology (n=16)
- Rheumatology (n=10)
- Pulmonology (n=9)

88 genetic biomarkers, of which top 10 are :

- CYP2D6 (n=68)
- G6PD (n=39)
- CYP2C19 (n=22)
- ESR, PGR (n=21)
- ERBB2 (n=17)
- CYP2C9 (n=14)
- IFNL3 (n=12)
- BCR-ABL1 (n=10)
- *EGFR* (n=10)
- UGT1A1 (n=9)
- *ALK* (n=9)

https://www.fda.gov/drugs/science-research-drugs/table-pharmacogenomic-biomarkers-drug-labeling

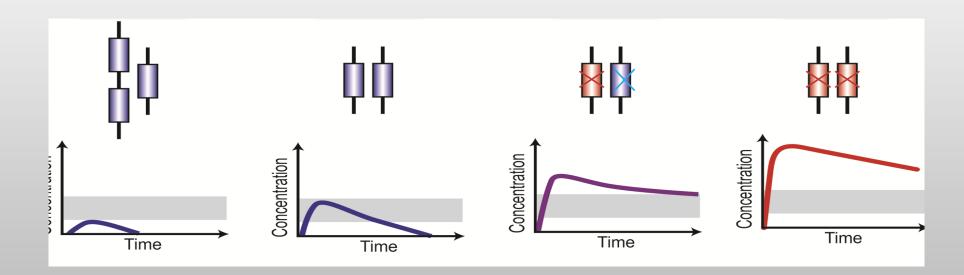
NEW FDA RESOURCE TABLE, 2020

- GERMLINE ASSOCIATIONS ONLY, WITH A CLINICAL FOCUS
- CATEGORIZES ASSOCIATIONS IN 3 LISTS, BASED ON EVIDENCE :
 - SUPPORT THERAPEUTIC MANAGEMENT RECOMMENDATIONS : 51 DRUGS, 13 GENES
 - **POTENTIAL** IMPACT ON SAFETY OR RESPONSE : 19 DRUGS, 7 GENES
 - POTENTIAL IMPACT ON PHARMACOKINETIC PROPERTIES ONLY : 37 DRUGS, 5 GENES
- BASED ON FDA CLEARED LABELING AND AN INTERNAL (FDA) WORKGROUP REVIEW
- INTENDED TO BE DYNAMIC AND OPEN TO PUBLIC COMMENT

https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations

FDA RESOURCE TABLE EXAMPLES

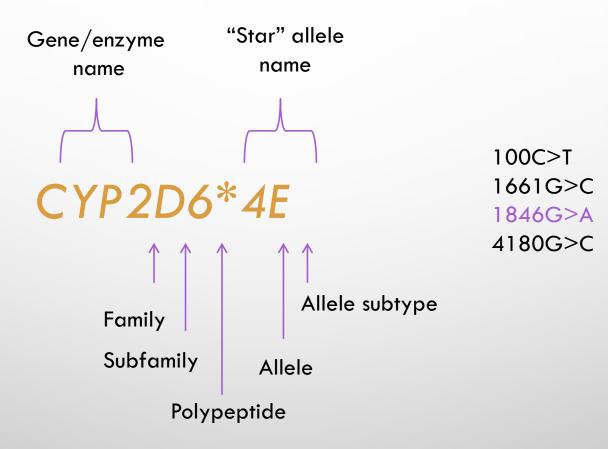
- FIRST TIER :
 - CYP2D6 AND AMPHETAMINE, ARIPIPRAZOLE, ATOMOXETINE, BREXPIPRAZOLE, CITALOPRAM, CLOBAZAM, CLOZAPINE, ILOPERIDONE, THIORIDAZINE AND VENLAFAXINE
 - CYP2C9 AND DRONABINOL
 - HLA-B*15:02 AND CARBAMAZEPINE


- SECOND TIER :
 - CYP2D6 AND PERPHENAZINE
 - HLA-A*31:01 AND CARBAMAZEPINE
- THIRD TIER :
 - CYP2D6 AND AMITRIPTYLINE, AMOXAPINE, CLOMIPRAMINE, DESIPRAMINE, DIAZEPAM, DOXEPIN, FLUVOXAMINE, IMIPRAMINE, NORTRIPTYLINE, PAROXETINE, PROTRIPTYLINE, RISPERIDONE, TRIMIPRAMINE
 - CYP2C19 AND ESCITALOPRAM

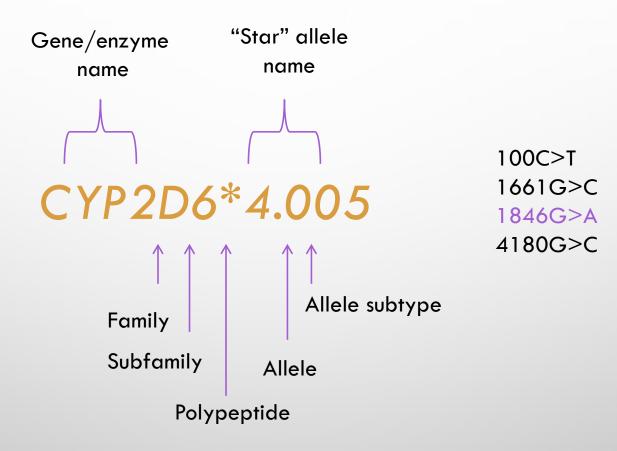
https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations

Pharmacogenetic associations for which the data support therapeutic management recommendations

Drug	Gene	Affected Subgroups+	Description of Gene-Drug Interaction
Abacavir	HLA-B	*57:01 allele positive	Results in higher adverse reaction risk (hypersensitivity reactions). Do not use abacavir in patients positive for HLA-B*57:01.
Amifampridine	NAT2	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Use lowest recommended starting dosage and monitor for adverse reactions. Refer to FDA labeling for specific dosing recommendations.
Amifampridine Phosphate	NAT2	poor metabolizers	Results in higher systemic concentrations. Use lowest recommended starting dosage (15 mg/day) and monitor for adverse reactions.
Amphetamine	CYP2D6	poor metabolizers	May affect systemic concentrations and adverse reaction risk. Consider lower starting dosage or use alternative agent.
Aripiprazole	CYP2D6	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Aripiprazole Lauroxil	CYP2D6	poor metabolizers	Results in higher systemic concentrations. Dosage adjustment is recommended. Refer to FDA labeling for specific dosing recommendations.
Atomoxetine	CYP2D6	poor metabolizers	Results in higher systemic concentrations and higher adverse reaction risk. Adjust titration interval and increase dosage if tolerated. Refer to FDA labeling for specific dosing recommendations.
Azathioprine	TPMT and/or NUDT15	intermediate or poor metabolizers	Alters systemic active metabolite concentration and dosage requirements. Results in higher adverse reaction risk (myelosuppression). Consider alternative therapy in poor metabolizers. Dosage reduction is recommended in intermediate metabolizers for NUDT15 or TPMT. Intermediate metabolizers for both genes may require more substantial dosage reductions. Refer to FDA labeling for


		Intermediate	
Ultra-rapid	Normal/	metabolizer:	Poor
metabolizer :	Extensive	Mix of normal,	metabolizer: 2
multiple copies of	metabolizer:	decreased and/or	no function alleles
normal alleles	2 normal alleles	no function alleles	

Effect on drug response is drug-dependent...


http://www.gbhealthwatch.com

CYTOCHROME P450 (CYP) NOMENCLATURE

http://www.cypalleles.ki.se/

CYTOCHROME P450 (CYP) NOMENCLATURE

*1 suggests that no variants were detected

PharmVar.org

ASSIGNMENT OF FUNCTIONAL STATUS

Pharmacogene Vari				HOME	ABOUT	GENES	SUBMISSION	s me	MBERS	RESOURCES	CONTACT PV ID Looki
			PV00429	<u>1847G>A</u> (sp	plicing defect/	/169frameshift))			no function	
	<u> </u>	CYP2D6*4A	PV00235	310G>T, 74 (H94R), 996C	5C>G , 842T >G , 1662G> meshift), 209	<mark>≻C</mark> , <mark>¶1847G>/</mark> 8A>G, <u>3385</u> A	(L91M), <u>983A>G</u>	Def	deposited b <u>Gough et al</u> <u>Hanioka et</u> <u>Kagimoto e</u>	al. 1990	y Nofziger
	<u> </u>	CYP2D6*4B	PV00237		847G>A (sp	(L91M), <u>983A</u> licing defect/16	. ,	Lim	<u>Kagimoto e</u>	el al 1990	
	<u> </u>	CYP2D6*4C	PV00236	· `		<u>C</u> , <mark>41847G>A</mark> 8T>C, <mark>4181G</mark>		Lim	<u>Yokota et a</u>	l. 1993	
	<u> </u>	CYP2D6*4D	PV00847	- <u>1426C>T</u> , - <u>1000G>A</u> , <u>100C>T</u> (P34S), <u>310G>T</u> , 842T>G_1038C>T_1662G>C_ <u>#1847G>A</u> (splicing					y Gaedigk et al.		
	<u> </u>	CYP2D6*4E	PV00254			<mark>C</mark> , 4<u>1847G>A</u> 1G>C (S486T)		Lim	Marez et al	. 1997	
	<u> <u> CYP2D6*4.006</u> </u>	CYP2D6*4F	PV00257	<u>996C>G, 16</u>	<u>62G>C</u> , <u> 18</u>	(L91M), <u>983A</u> 3 <mark>47G>A</mark> (splici 5 <mark>9C>T</mark> , <u>4181G</u>	ng	Lim	Marez et al	. 1997	

ALLELE FREQUENCIES VARY BY ETHNICITY: CYP2D6 AND CYP2C19 EXAMPLES

Allele	Europeans	African	East Asian	South Asian	American
CYP2C19*2	18.3	18.1	31.0	34.0	10.1
CYP2C19*3	rare	rare	6.7	rare	rare
CYP2C19*17	22.4	23.5	1.5	13.6	12.0
CYP2D6*3	4.1	rare	rare	rare	rare
CYP2D6*4	15.5	11.9	rare	11.6	15.7
CYP2D6*5	3.0	4.0	6.5	2.0	3.0
CYP2D6*10	rare	3.2	58.7	6.5	rare
CYP2D6*17	rare	19.7	rare	rare	1.0
CYP2D6*29	rare	9.2	rare	rare	rare
CYP2D6*41	3.0	3.0	3.0	13.5	3.5
CYP2D6xN	2.3	9.3	2.0	1.5	1.0

Van Westrhenen R, et al Frotiers in Psych, 11:94, 2020

SOURCES OF INACCURATE PGX RESULTS

- PRE-ANALYTIC :
 - ORDERING THE WRONG TEST
 - INTERFERING SUBSTANCES (E.G. PRESERVATIVE)
 - SPECIMEN QUALITY
 - NON-STANDARD SPECIMEN
 - SPECIMEN MIX-UP
- ANALYTIC :
 - INSTRUMENT
 - ASSAY DESIGN
 - REAGENTS
 - CONTAMINATION
 - UNDETECTED ALLELE DROPOUT

- POST-ANALYTIC :
 - INSUFFICIENT CONTENT LEADING TO INACCURATE DIPLOTYPE CALLS, MISSED ALLELES
 - MISINTERPRETATION OF *1
 - INACCURATE INTERPRETATION
 - PHENOTYPE PREDICTION INACCURATE OR INCONSISTENT WITH FUNCTIONAL/BIOCHEMICAL/CLINIC AL PHENOTYPE
 - INAPPROPRIATE DRUG-GENE
 GUIDANCE
 - UNRECOGNIZED SUBSTRATE SPECIFICITY OF DRUG-GENE INTERACTIONS
 - MULTI-GENE IMPACT(S)
 - NON-GENETIC IMPACT(S)

EFFORTS TO STANDARDIZE THE "MUST TEST" PGX VARIANTS UNDERWAY

- CURRENTLY PUBLISHED FOR CYP2C9 AND CYP2C19
- CYP2D6 IS IN PROGRESS, OTHER GENES PLANNED
- ORGANIZED INTO TIERS OF VARIANTS
- GUIDELINES AND RELATED WEBINARS ARE AVAILABLE THROUGH AMP.ORG
- RECOGNIZED BY THE COLLEGE OF AMERICAN PATHOLOGISTS

Term/Gene Category	Final Term ^a	Functional Definition	Genetic Definition	Example diplotypes/alleles
Allele Functional	Increased Function	Function greater than normal function	N/A	CYP2C19*17
Status-all genes	Normal Function	Fully functional/wild-type	N/A	CYP2C19*1
	Decreased Function	Function less than normal function	N/A	CYP2C19*9
	No Function	Non-functional	N/A	CYP2C19*2
	Unknown Function	No literature describing function or the allele is novel	N/A	CYP2C19*29
	Uncertain Function	Literature supporting function is conflicting or weak	N/A	CYP2C19*12
Phenotype-Drug Metabolizing Enzymes (CYP2C19, CYP2D6, CYP3A5, CYP2C9, TPMT, DPYD, UGT1A1)	Ultra-rapid Metabolizer	Increased enzyme activity compared to rapid metabolizers.	Two increased function alleles, or more than 2 normal function alleles	CYP2C19*17/*17 CYP2D6*1/*1XN
	Rapid Metabolizer	Increased enzyme activity compared to normal metabolizers but less than ultra-rapid metabolizers.	Combinations of normal function and increased function alleles	CYP2C19*1/*17
	Normal Metabolizer	Fully functional enzyme activity	Combinations of normal function and decreased function alleles	CYP2C19*1/*1
	Intermediate Metabolizer	Decreased enzyme activity (activity between normal and poor metabolizer)	Combinations of normal function, decreased function, and/or no function alleles	CYP2C19*1/*2
	Poor Metabolizer	Little to no enzyme activity	Combination of no function alleles and/or decreased function alleles	CYP2C19*2/*2
Phenotype- Transporters and	Increased Function	Increased transporter function compared to normal function.	One or more increased function alleles	SLCO1B1*1/*14
non-drug metabolizing enzymes ^b	Normal Function	Fully functional transporter function	Combinations of normal function and/or decreased function alleles	SLCO1B1*1/*1
(SLCO1B1)	Decreased Function	Decreased transporter function (function between normal and poor function)	Combinations of normal function, decreased function, and/or no function alleles	SLCO1B1*1/*5
	Poor Function	Little to no transporter function	Combination of no function alleles and/or decreased function alleles	SLCO1B1*5/*5
Phenotype-Carrier status (HLA-B)	Positive	Detection of high-risk allele	Carrier of high-risk allele	HLA-B*15:02
		High risk-allele not detected a., CYP2D6 Poor metabolizer, TPMT Normal metabolize of the CPIC guideline authors if applicable for genes that		

PHENOTYPE PREDICTIONS MAY CHANGE

Citation: Clin Transl Sci (2019) XX, 1-9; doi:10.1111/cts.12692

ARTICLE

Standardizing CYP2D6 Genotype to Phenotype Translation: Consensus Recommendations from the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group

Kelly E. Caudle^{1,*}, Katrin Sangkuhl², Michelle Whirl-Carrillo², Jesse J. Swen³, Cyrine E. Haidar¹, Teri E. Klein², Roseann S. Gammal^{1,4}, Mary V. Relling¹, Stuart A. Scott^{5,6}, Daniel L. Hertz⁷, Henk-Jan Guchelaar³ and Andrea Gaedigk^{8,9}

- CHANGED PHENOTYPE PREDICTIONS TO NARROW THE RANGE FOR "NORMAL" WHICH INCREASED THE EXPECTED PROPORTION OF INTERMEDIATE METABOLIZERS
- EMPHASIS ON ACTIVITY SCORES; CHANGED ACTIVITY SCORE OF CYP2D6*10 TO 0.25

GENETIC VARIATION IN DRUG METABOLIZING ENZYMES IS ALSO USED TO PREDICT THE CYP2D6 ACTIVITY SCORE

Allele functional status	Allele activity score
Normal function	1
Decreased function	0.5
*10	0.25
No function	0

The CYP2D6 activity score is a quantitative value based on the sum of the allele activity scores

(Allele 1 Score) + (Allele 2 Score) = Total Score

May be modified based on known coadministration of inhibitors or inducers

Inferred CYP2D6 phenotype	Previous CPIC definition (AS)	Previous DPWG definition (AS)	Consensus definition (AS)	Consensus contiguous definition (AS)	Examples of CYP2D6 diplotypes for consensus translation method
UM	> 2	> 2.5	> 2.25	> 2.25	*1/*1xN, *1/*2xN ^b , *2 ^a /*2xN ^b , *1x2/*9
NM	1–2	1.5-2.5	1.25	1 .25 ≤ <i>x</i> ≤ 2.25	*1/*10
			1.5		*1/*41, *1/*9
			2.0		*1/*1, *1/*2
			2.25		*2x2/*10
IM	0.5	0.5-1	0.25	0 < <i>x</i> < 1.25	*4/*10
			0.5		*4/*41, *10/*10
			0.75		*10/*41
			1		*41/*41, *1/*5
PM	0	0	0	0	*3/*4, *4/*4, *5/*5, *5/*6

Table 3 Final consensus CYP2D6 genotype to phenotype translation compared to previously reported CPIC and DPWG methods

AS, activity score; CPIC, Clinical Pharmacogenetics Implementation Consortium; DPWG, Dutch Pharmacogenomics Working Group; IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; UM, ultrarapid metabolizer.

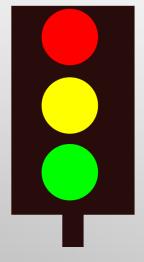
^aCYP2D6*2 is currently considered to be a normal function allele by CPIC and DPWG; however, this function assignment has been challenged³² and some laboratories report CYP2D6*2 function differently. Function of this allele will be reassessed as additional data become available. ^bN is categorical and indicates the number of copy variants (e.g., *1x2, *1x3, etc).

GENE-BASED DOSING GUIDELINES AS OF 4/16/2020

- ROYAL DUTCH ASSOCIATION FOR THE ADVANCEMENT OF PHARMACY PHARMACOGENOMICS WORKING GROUP (DPWG), N=93
- CLINICAL PHARMACOGENETICS IMPLEMENTATION CONSORTIUM (CPIC), N=54
 - YOUTUBE VIDEO GUIDELINES AVAILABLE FOR SOME
- CANADIAN PHARMACOGENOMICS NETWORK FOR DRUG SAFETY (CPNDS), N=8
- PROFESSIONAL ORGANIZATIONS (E.G. ONCOLOGY, INFECTIOUS DISEASE)

COMMERCIAL SOFTWARE PRODUCTS

- PROPRIETARY COMMERCIAL PRODUCTS ARE AVAILABLE
 - INDEPENDENT OF LAB (E.G., GENEDOSE[™], YOUSCRIPT[®])
 - EXCLUSIVE TO A LAB (E.G., PGXONE[™] VIA ADMERA HEALTH, GENESIGHT[®] VIA ASSUREX HEALTH, DNA INSIGHT[®] VIA PATHWAY GENOMICS)
- SOME INTEGRATE GENETICS WITH CLINICAL AND DEMOGRAPHIC DATA AND/OR
 OFFER INTERACTIVE RISK MITIGATION TOOLS FOR POLYPHARMACY
- ALL TOOLS PROVIDE DECISION SUPPORT TOOLS BUT FEW ARE SUPPORTED BY RANDOMIZED CLINICAL TRIALS, AND NO STUDIES DIRECTLY COMPARE EFFECTIVENESS OF THE CLINICAL DECISION SUPPORT


GUIDANCE STRATEGIES

DRUG SELECTION/AVOIDANCE

- RISK OF A SERIOUS ADVERSE DRUG REACTION
- LIKELIHOOD OF RESPONSE

- ESTIMATE OPTIMAL DOSE AND DOSING FREQUENCY
 - STANDARD
 - LOWER THAN USUAL (SENSITIVE)
 - HIGHER THAN USUAL (RESISTANT)
- OFTEN RECOMMEND TDM

PHARMACOGENOMICS KNOWLEDGE BASE

	HARMG KB	Publications	News	Downloads	Contact		(?) Help	
	Search PharmG	КВ				Q		
		Search	for a molecule	e, gene, variant, or co	ombination			
		nGKB data are under a Crea n <u>GKB</u> if you use our informa		cense. More details are	in our <u>Data Usage Policy</u> . Please	e <u>cite</u>		
Annotated Drugs		Curated Pathway			nical Guideline Annotations		Drug Label Annotations	
€€ 685`		¦⊳° 149			143		Ē 753 ℃	
harmGKB.org	g, accessed	4/16/2020)		00	\bigcirc	0	(

0

LEVELS OF EVIDENCE: BENZODIAZEPINES

	CYP2C9	CYP2C19	СҮРЗА4	СҮРЗА5	UGT2B15	SCN1A
Clobazam		2A				3
Diazepam	NR	3				
Oxazepam					3	
Midazolam			3	3		
Lorazepam					3	

Disclaimers apply to this and the next several slides:

- Levels of evidence represent those curated by the PharmGKB.org wherein 1A is the highest possible level
- The genes and drugs provided are examples and do not represent all relevant drug/gene associations

LEVELS OF EVIDENCE: STIMULANTS (E.G. ADHD)

	ABCB1	CYP2D6	ADRA2A	СОМТ	DRD2/ANNK1	HTRIA	SLCA2
Amphetamine					3		
Methamphetamine						3	
Atomoxetine		1A					3
Methylphenidate	3		3	3			3
Modafinil	3			3			

LEVELS OF EVIDENCE: ANTIPSYCHOTICS

	ABCB1	CYP2C9	CYP2D6	СОМТ	DRD2/ANNK1	HTRIA	HTR2A	MTHFR
Aripiprazole			3		3			
Clozapine	3			3	3	3		3
Haloperidol			3	3				
Lithium	3							
Olanzepine	3	3			3	3	3	3
Quetiapine				3		3		
Risperidone	3		2A	3	2A	3	3	

LEVELS OF EVIDENCE: ANTIDEPRESSANTS

	ABCB1	CYP2B6	CYP2C19	CYP2D6	сомт	GRIK4	HTR1A	HTR2A	SLC6A1
Amitriptyline	3		1A	1A					
Nortriptyline	3			1A					
Bupropion		2A	3		3			3	
Citalopram	3		1A	3		2B		2B	
Fluoxetine				1A	3		3	3	
Paroxetine	3			1A		2B	2B	3	
Sertraline			1A			2B	3		
Venlafaxine	3			2A	3				3

EXAMPLES OF POSITIVE OUTCOMES FROM MULTI-GENE PGX TESTING

- IMPROVED ANTIDEPRESSANT EFFICACY AND ADHERENCE
 - 2.52-FOLD GREATER RATE OF REMISSION OF MAJOR DEPRESSIVE DISORDER WITH TESTING (SINGH, CLIN PSYCHOPHARMACOLOGY NEUROSCIENCE, 2015)
- REDUCED PHARMACY COSTS
 - \$1035.60 SAVINGS OVER 1 YR IN TOTAL MEDICATION COSTS WITH TESTING IN COHORT OF PSYCHIATRIC PATIENTS (WINNER ET AL, CURRENT MEDICAL RESEARCH & OPINION, 2015)
- REDUCED RATES OF HOSPITALIZATION
 - 9.8% WITH TESTING VERSUS 16.1% WITHOUT TESTING IN COHORT OF PATIENTS ≥65 YRS (BRIXNER ET AL, J MEDICAL ECONOMICS, 2015)
- REDUCED LENGTH OF STAY IN A PSYCHIATRIC HOSPITAL
 - 36.3 DAYS VS 46.6 DAYS (BATTIG VAD ET AL, PHARMACOPSYCHIATRY, 2020)

PROPOSED MINIMUM GERMLINE PGX PANEL FOR PSYCHIATRY

- EVIDENCE BASED PANEL INCLUDES 16 VARIANT ALLELES WITHIN FIVE GENES:
 - CYP2C9, CYP2C19, CYP2D6
 - HLA-A, HLA-B
- RELEVANT TO ANTIDEPRESSANTS, ANTIPSYCHOTICS, STIMULANTS, BENZODIAZEPINES, MOOD STABILIZERS, ETC.

- CONSISTENT WITH PUBLISHED CPIC GUIDELINES:
 - TRICYCLICS (N=7)
 - SELECTIVE SEROTONIN REUPTAKE INHIBITORS (N= 5)
 - ATOMOXETINE
 - ANTICONVULSANTS (N=3)

Bousman et al, Curr Opin Psych 32(1):7-15, 2019

https://cpicpgx.org/guidelines/

EXPANDED PGX PANELS FOR BEHAVIORAL HEALTH

POSSIBLE PROS

POSSIBLE CONS

- A BROAD TEST COULD PROVIDE GUIDANCE FOR A LARGE NUMBER OF DRUGS BY CONSIDERING MULTIPLE ASPECTS OF PK AND PD
- MAY PROMOTE A MORE INTENSIVE REVIEW OF MEDICATIONS, PARTICULARLY FOR POLYPHARMACY PATIENTS
- MANY MULTI-GENE TESTS CAN BE CONSOLIDATED
 TO MINIMIZE TIME TO RESULT AND COSTS

- INCONSISTENCIES IN CONTENT AMONG COMMERCIALLY AVAILABLE TESTS
- WEIGHTED CONTRIBUTION OF MULTIPLE GENE VARIANTS TO THE DRUG RESPONSE PHENOTYPE PREDICTION MAY NOT HAVE BEEN WELL STUDIED
- REIMBURSEMENT MAY BE POOR FOR GENES THAT ARE NOT REPRESENTED BY FDA LABELING OR PUBLISHED GENE-BASED DOSING GUIDELINES

0

TDM

0

 \bigcirc

POSSIBLE INDICATIONS FOR TDM

- MANDATORY, FOR SAFETY (E.G. LITHIUM)
- THERAPEUTIC RANGE ESTABLISHED FOR MEDICATIONS OF INTEREST
- NARROW THERAPEUTIC RANGE
- CONCERNS ABOUT PATIENT ADHERENCE
- CONCERNS ABOUT PHARMACOKINETICS (E.G., CLINICAL STATUS, EXTREME AGES, PGX RESULTS)
- POLYPHARMACY AND/OR CHANGES IN MEDICATIONS
- PATIENT HAS FAILED TO RESPOND OR RESPONSE HAS DETERIORATED
- PATIENT HAS EXPERIENCED A SERIOUS ADVERSE DRUG REACTION
- RELEVANT TESTING IS AVAILABLE WITH REASONABLE LOGISTICS

TDM EXAMPLE: ATYPICAL ANTIPSYCHOTICS

	Dose range (mg/d)	Therapeutic range in plasma (ng/mL), C _{min}	Level of recommendation for TDM (scale of 1-5)
Amisulpride	300-800	200-320	1
Aripiprazole	15-30	150-210	2
Clozapine	200-600	350-500	1
Olanzepine	10-20	20-40	1
Quetiapine	200-600	50-500	2
Paliperidone	3-12	20-60	2
Risperidone	2-4	20-60	2
Ziprasidone	120-160	50-130	2

Urban AE & Cubala WJ, Psychiatr Pol 51(6):1059-77, 2017

INTEGRATING PGX AND TDM FOR RISPERIDONE

- CALCULATED RISPERIDONE/9-OH RATIO AND COMPARED GENETICALLY DERIVED PHENOTYPE TO PUBLISHED MEDIAN :
 - UM ~ 0.03
 - NM ~ 0.08
 - IM ~ 0.56
 - PM ~ 2.5
- STRONG CYP2D6 INHIBITOR >1
- CYP3A4 INHIBITORS AND RENAL INSUFFICIENCY MAY ALSO CHANGE PHENOTYPE

- PROPOSED MODEL TO PREDICT REAL-WORLD PHENOTYPE WITH A CONCENTRATION-TO-DOSE (C/D) RATIO UNDER C_{MIN} CONDITIONS
 - DETERMINE NORMAL C/D
 - (TOTAL RISPERIDONE + 9-OH IN NG/ML) / (RISPERIDONE DOSE IN MG/D)
 - C/D < 1/2 OF NORMAL ~ DOSE TOO LOW
 - C/D > 2X NORMAL ~ DOSE TOO HIGH

De Leon J, Neuropharmacology, 2019 🔘

SOURCES OF INACCURATE TDM RESULTS

- PRE-ANALYTIC :
 - TIMING OF SPECIMEN COLLECTION RELATIVE TO LAST DOSE
 - ORDERING THE WRONG TEST
 - INTERFERING SUBSTANCES (E.G. PRESERVATIVE)
 - SPECIMEN QUALITY
 - NON-STANDARD SPECIMEN
 - SPECIMEN MIX-UP

- POST-ANALYTIC :
 - INACCURATE INTERPRETATION
 - ADHERENCE
 - UNRECOGNIZED CO-MEDICATIONS OR OTHER CHANGES THAT COULD AFFECT PHARMACOKINETICS
 - INAPPROPRIATE THERAPEUTIC RANGE
 - ASSUMED EQUALITY TO PREVIOUS/ALTERNATE LABORATORY METHODS

- ANALYTIC :
 - INSTRUMENT
 - ASSAY DESIGN
 - INTERFERENCE
 - CONTAMINATION

SUCCESSFUL IMPLEMENTATION

PICKING THE RIGHT TEST

- TEST CONTENT SHOULD ALIGN WITH PATIENT POPULATION, CLINICAL INDICATION(S) AND AVAILABLE INTERPRETATION TOOLS
 - PGX
 - GENES INCLUDED ?
 - VARIANTS DETECTED, WHICH MAY DEPEND ON TECHNOLOGY USED FOR TESTING
 - TDM
 - DRUGS AND METABOLITES INCLUDED ?
 - ANALYTICAL MEASUREMENT RANGE IS APPROPRIATE
- LOGISTICS
 - SPECIMEN AND APPROPRIATE HANDLING
 - TIME TO RESULT
 - COST/REIMBURSEMENT

TR: GENETIC TESTING REGISTRY					
CYP2D6		Tests	1	Search Advanced search for tests	
Tests (86) Conditions (26)	Genes (2) Laboratories (40)				
Filters	Results: 1 to 20 of 86			<< First < Prev Page 1 of 5 Next > Last >>	
▼ Test type Clinical (86)	Tests names and labs	Conditions	Genes and analytes	Methods	
Test purpose	CYP2D6	3	<u>1</u>	T Targeted variant analysis	
Diagnosis (11) Monitoring (3) Mutation Confirmation (6)	ARUP Laboratories, Molecular Genetics and Genomics ARUP Laboratories United States				
Pre-symptomatic (6) Predictive (9) Prognostic (4) Therapeutic management (22)	CYP2D6 MVZ Dortmund Dr. Eberhard & Partner Germany	1	<u>1</u>	C Sequence analysis of the entire coding region	
Test method	cyp2D6 genotype		1	Targeted variant analysis	
iochemical Genetics	Genomic Engenharia Molecular Brazil				
Iolecular Genetics Deletion/duplication analysis (11) Microsatellite instability testing (MSI) (1)	CYP2D6 drug metabolizing enzyme gene mutation Molecular Diagnostics Children's Hospital of Wisconsin United States	<u>1</u>	<u>1</u>	 Deletion/duplication analysis Targeted variant analysis 	
RNA analysis (2) Sequence analysis of select exons (5) Sequence analysis of the entire coding region 2) Targeted variant analysis (67)	CYP2D6 Genotyping Knight Diagnostic Laboratories - Molecular Diagnostic Center Oregon Health & Science University United States	<u>1</u>	<u>1</u>	T Targeted variant analysis	
Test service	CYP2D6 Single Gene	1	1	D Deletion/duplication analysis	

0

FACTORS THAT CONTRIBUTE TO SUCCESSFUL IMPLEMENTATION OF PGX AND TDM

- MULTI-DISCIPLINARY APPROACH :
 - LABORATORY
 - PHARMACY
 - PROVIDERS
 - ADMINISTRATORS/PAYERS
 - REGULATORS
- TRANSPARENCY ABOUT WHEN TO ORDER WHICH TESTS
- CONSENSUS ON HOW RESULTS WILL BE UTILIZED; ALGORITHMS ARE OFTEN HELPFUL
- EDUCATION

Priority should be on promoting safety and good patient care!

CONCLUSIONS

- PGX TARGETS PREDICT DISCRETE ASPECTS OF PHARMACOLOGY
- CLINICAL APPLICATIONS OF PGX SHOULD ALIGN WITH NEEDS, AND CONSIDER THE EVIDENCE BEHIND ANY DRUG-GENE ASSOCIATION
- NON-GENETIC FACTORS ARE ALSO CRITICAL COMPONENTS OF MEDICATION MANAGEMENT
- NO PGX TEST CAN REPLACE THE NEED FOR CLINICAL AND THERAPEUTIC MONITORING
- TDM MAY REPRESENT THE BEST OPPORTUNITY FOR DOSE OPTIMIZATION
- SUCCESSFUL IMPLEMENTATION REQUIRES AN MULTI-DISCIPLINARY APPROACH

THANK YOU FOR YOUR ATTENTION!

GWEN.MCMILLIN@ARUPLAB.COM